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Summary 

In this paper we present numerical solutions of the steady, two-dimensional Navier-Stokes equations for an 
incompressible fluid, for the flow in a plane elliptical region driven by the motion of its boundary. As the 
Reynolds number increases a core region in which the vorticity is uniform emerges, and a favourable comparison 
is possible with results obtained in the high-Reynolds-number limit. 

1. Introduction 

The well-known Prandtl-Batchelor theorem states that in an inviscid flow, regions in 
which there are closed streamlines are regions of the flow in which the vorticity is uniform, 
see for example Batchelor [1]. If  the region of closed streamlines is enclosed by a solid 
boundary,  and the fluid has vanishingly small viscosity, then it and the 'core '  of uniform 
vorticity are separated by a thin boundary  layer. In such a situation the flow will be driven 
by some part, or all, of the moving boundary and the role of the boundary  layer is crucial 
in determining the core vorticity. In the simple case of a circular boundary the core 
vorticity is readily determined without reference to the details of the boundary-layer  
solution. In other situations the periodic boundary-layer  solution will have to be known 
explicitly in order to determine the core vorticity. Riley [2] has considered such a situation 
in which the boundary of a plane elliptical region is in continuous motion. He shows that, 
with a finite computat ional  domain, periodicity of the boundary-layer solution is not 
sufficient to determine the core vorticity uniquely. It  is necessary, in addition, to ensure 
carefully that the boundary-layer and core vorticity match in an appropriate  manner.  

In the present paper  we return to the steady flow of an incompressible, viscous fluid in 
an elliptical geometry in which the flow is driven by motion of the boundary.  Our 
numerical solutions have been obtained at finite values of  an appropriately defined 
Reynolds number  by a method introduced by Dennis and Hudson [3], and the aims of our 
investigation are three-fold. The numerical method [3] is one which is second-order 
accurate in the grid sizes of the computat ional  mesh with finite-difference equations that 
have associated matrices of diagonally-dominant form, without recourse to windward 
differencing. The method has been used with both rectangular [3] and polar  [4] coordi- 
nates but its usefulness cannot be guaranteed in any particular coordinate system. One of 
our aims, therefore, is to demonstrate the applicability and effectiveness of this powerful 
method in an elliptic coordinate system. A second aim is to confirm, by a direct 
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comparison of results, that the method outlined in [2] is indeed an appropriate one in the 
high-Reynolds-number limit. A final aim is to extend the range of results to higher values 
of ellipse eccentricity than was apparently possible in [2], and in particular to reveal any 
anomalies in the flow that might account for the difficulties encountered in [2] at higher 
eccentricities. 

In Section 2 we introduce the governing equations in split operator form and, following 
[3], the fairly elaborate discretisation of them that leads to sets of finite-difference 
equations with associated diagonally-dominant matrices. Section 3 deals with the numeri- 
cal procedures associated with the iterative scheme and the results obtained are presented 
and discussed in Section 4. Results that have been obtained cover a range of ellipse 
eccentricities and Reynolds numbers. Our results show that as the Reynolds number 
increases a well-defined region emerges in the core of the flow in which the vorticity is 
uniform, as expected. We make a favourable comparison of this core vorticity with the 
results obtained in the high-Reynolds-number limit [2]. In the solutions for higher 
eccentricities than were apparently possible in [2] we see a substantial increase in the core 
vorticity, but  otherwise report no unusual features of the flow. 

2. Governing equations and f inite-difference approximations  

We are concerned with the steady, two-dimensional flow of an incompressible, viscous 
fluid that takes place inside, and in the plane of a cross-section of, the elliptic cylinder 

X,2 y,2 
- -  = 1, (2 .1)  

a-"Y + b 2 

where (x' ,  y ' )  are rectangular coordinates and (a, b) the semi-major and -minor axes of 
the ellipse. We work with elliptic coordinates (~, ~), related to the non-dimensional 
rectangular coordinates (x, y)  = (x ' / l ,  y ' / l )  by 

x = 2 e -he cosh , /cos  ~, y = 2 e -n" sinh 7/sin ~, (2.2) 

where ,/--*le represents the ellipse; the characteristic length 1 has been taken as l = ½a 
enesech 71e and the eccentricity of the ellipse is given by e = sech *le- The motion within the 
ellipse is induced by a 'slip' velocity at the boundary which we take, as in [2], to be 

U~ --- Uo(1 + ~ cos ~), (2.3) 

where U 0 is some constant velocity. With scale Uo ! we introduce the dimensionless stream 
function ~k which is related to the velocity components in the (~, ,/)-directions by 

1 a¢ 1 (2.4) 
U = - - - -  / 3 =  - - - - - -  

s a n '  s a~ 

Where, for the elliptic coordinates employed here the scale factors s 1, s 2 are equal and 
given by  

s 1 = s: = s = 2 e-ne(sinh2~/+ sinZ~) 1/2. (2.5) 
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We choose to work with the split-operator or ('k, ~)-form of the Navier-Stokes 
equations, where ~" is the vorticity, such that the governing equations are 

(0q, 0~" 0q, 0~') 
V2~ "= R Or/ 0~ 0~ Or/ ' (2.6) 

V 2+ = _ s 2 L  

where V 2 = 0 2 / 0 ~  2 -F 02/0r/2 is the two-dimensional Laplacian, and R = Uo]/V is the 
Reynolds number, where p is the kinematic viscosity. The boundary conditions that we 
require to satisfy on the ellipse are 

~b = 0 on r /= r/e, (2.7) 

together with a condition on ~" at r /= r/e which is derived from the velocity of slip in (2.3). 
The governing equations, (2.6), are discretised on the (~, ~1) grid. A typical grid point 

on this grid has coordinates (~0, r/o), and flow quantities there are denoted by subscript 0. 
At the adjacent grid points ( ~ o + h ,  r/o), (~0, r /o+k) ,  (~0 - h ,  %)  and (~o, r / o - k ) ,  
quantities will be denoted by subscripts 1, 2, 3 and 4 respectively. 

For equation (2.6) 2 the standard central-difference approximation yields, with X = h/k ,  

~1 + ~2~2 + ~3 + ~x2~4 -- 2(1 + X2) ~k0 + s2h2~ o = 0. (2.8) 

For the vorticity-transport equation the finite-difference method follows a derivation 
originating with Dennis [5]. We first use (2.4) to write (2.6)1 as 

V2~= Rs u-~ +o , (2.9) 

which we then separate into the two equations 

02~ " 
Rs.~ =A(~, r/), a~ 2 

02~ , 
n s v  ~-~ = - A ( ~, r/ ) ,  

0r/2 O7/ 

(2.10) 

where A(~, r/) is an unknown function. Consider equation (2.10)1. Along the ellipse r /=  */0 
we put 

~" = F(~, no) e-/(Ln°), (2.11) 

where 

f (~ ,  r/o)= - T R  f~ s(t ,  r/o)U(t, r/o)d/. (2.12) 
4o 

The equation for F is, from (2.10)1 

a2____ff_ F - ~R2s2u2F + ½RFO~-7 (su) = Ae f, (2.13) a~ 2 o g  
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where all partial derivatives are evaluated at 7 = 70- Similarly along the hyperbola 4 = 4o 
we put 

= G(4o,  7)  e -gt~°'n), (2.14) 

where 

1 7/ 
g(4o,  7)  = - ~R fos(4o,% t )V(4o ,  t ) d t ,  (2.15) 

and from (2.10)2 G satisfies 

32__ff_G 
- ¼R2s2c2O + ½RG-~-S(so)= - A  e g, (2.16) 

372 o q  

where all partial derivatives are now evaluated at 4 = 40. 
We now approximate each of the equations (2.13) and (2.16) in terms of central 

differences at the point (40, 70) where both equations are applicable. The quantity 
A(40, 70) may be eliminated to give, after replacing F, G in terms of ~, and using (2.4), 

oo )}ro o. - { 2 ( l + ~ Z ) + ~ n K s o ~ U ~ +  = (2.17) 

Our approximation (2.17) of the vorticity transport equation has a truncation error 
O(h 4) + O(h 2k 2) which is the same as if the equation had been discretised using standard 
central differences. The difference equations (2.8) and (2.17) are to be solved iteratively. 
Now, the matrix associated with (2.17) does not necessarily possess the desirable property 
of diagonal dominance as it stands. We therefore follow the method of Dennis and 
Hudson [3] to obtain a form of (2.17) that yields diagonal dominance without any further 
loss of accuracy. 

If the integrand of (2.12) is expanded in a Taylor series, followed by a further 
expansion of the exponential function, it may readily be shown that 

e l l  = 1 - ½Rsouoh + 1 -2  2 2t2 . ~  ( gt~ SoUon - ~R SU)o h2 + O( h3), 
og 

and (2.18) 

1 - - 2  2 2 / 2  , a  e/3 = 1 + ½Rsouoh + ~t~ SoUon - ~R~-~ (SU)o h2 + O(h3), 

with corresponding, similar, expressions for e g2, e g' following an expansion of (2.15). 
These quantities are introduced into (2.17) which is further simplified by the use of (2.4), 
and the observation that 

~', + ~'3 = 2~'0 + O(h2),  ~'2 + ~'4 = 2~'0 + O(k2) ,  

~1-~3=0(h), ~2-~4=0(k), 
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, ,  ,+"" 

=-ks,(l+-~cosl~,)+=,~ /0~2 /arl3/ + . . . .  (2.21) 

using the boundary condition on qJ and its derivative. Our notation in (2.21) is such that a 
subscript 1 now denotes a boundary point whilst a subscript 2 denotes the first grid point 
in from the boundary along a coordinate line and so on, bearing in mind that 71 increases 
outward. The term O(k 2 ) may be evaluated from (2.6)2 directly to give 

072 

Differentiation of (2.6)2 with respect to ~1 allows us, after some manipulation, to evaluate 

together with the consistent neglect of terms O(h 4, k 4) to give, finally, 

c1~" 1 + c2~" 2 + c3~" 3 + c4~" 4 - Co~" o = O, (2.19) 

where 

1 n 2  2 2 / 2  
c 1 = 1 - ½Rsouoh + ~t~ SoUon , 

I n 2  2 2 ~ 2 \  c 2 = X2(1 - ½Rsovok + gt~ SoVo K ),  

c 3 = 1 + ½RSoUoh + gt~ln2So2 Uo n212 , (2.20) 

1 ~ 2  2 2 / 2 \  
C 4 = h2(1 + ½Rsovok + gt~ SoVo K ) ,  

1 / 2 ~ 2  2 [  2 c 0 = 2 + 2 x  2 + z n  t~ So[U o + v 2 ) .  

It is readily shown that for all values of uoh and vok,  c i > 0, i = 1 to 4, and further, since 

C 1 ÷ C 2 ÷ C 3 ÷ C 4 =  CO, 

it follows that the matrix associated with the set of equations (2.19) is diagonally 
dominant in the sense of Varga [6]. We also remark, again, that (2.19) is of the same order 
of accuracy with respect to the grid size as the approximation to (2.9) by central 
differences, but the actual error terms are quite different. 

The remaining boundary condition that we must consider is a condition on the vorticity 
at the boundary ~1 = ~e. The natural boundary condition to apply there is on the 
tangential velocity (2.4)1 given in dimensionless form by u e = 1 + ~- cos/~. In order to 
represent this as a condition on the vorticity ~'e at the boundary we use a technique 
introduced by Woods [7], and employed extensively by Dennis and his co-workers (see for 
example [4]). First we write 
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Figure 1. Grid points along the hyperbola ~ =//./ (a). 

similarly the term O(k 3) in (2.21) so that finally we have the following: 

(~k2s? - ~k 3 e -2~' sinh 2~1)~ 1 

= ~sZk2(~'3 - 4 ~ ' 2 ) - ~ k 2 -  s,k(1 + ~ cos ~,) 

, , .3[, .  3[Os] - (OZsl  ( l+~cosg;,)} ,  (2.22) -~,~ ~a - l c o s~ ,+~ t~ - - ~ j  sin~, t0--~] ' 

where s and its derivatives are evaluated from (2.5). 
A potential difficulty associated with the coordinate system that we have adopted is 

b 

e 

Figure 2. Grid points along the ellipse ~1 = rti (a). The grid lines ~ = ~h, ~ = 2h,~ ~ = (4N - 1 )h /2 ,  ~ = (4N 
3 ) h / 2  are shown as curves (b), (c), (d) and (e) respectively. 



Figure 3. The grid close to a focus F showing coincidence of grid points. 
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that the confocal ellipses, and their hyperbolic orthogonal trajectories, degenerate to 
straight-line segments between, and extending from, the loci. The difficulty is overcome by 
ensuring that no grid point lies on this straight line. Thus we define k = 271e / (2M-  1) 
with the grid points located on the ellipses ~/= ~/i = ( 2 i -  1)k /2 ,  i = 1, 2 . . . . .  M. This 
choice ensures that the grid points are equally spaced along each hyperbola which spans 
the ellipse. Close to the 'degenerate lines' q-derivatives are represented using the points 
marked 0, 2, 4 in Fig. 1. Since ,/ increases away from the major axis the same pattern is 
adopted both above and below it. For the ~-direction where 0 ~< ~<  2~r, the same 
difficulty is overcome by choosing h = ~r/N with the grid points located at ~ = ~j = (2 j  - 
1)h/2 ,  j = 1, 2 . . . . .  2N. Close to the ends of the confocal ellipses derivatives with respect 
to ~ are represented using the points 0, 1, 3 in Fig. 2. This choice of grid leads to an 
unusual, but entirely satisfactory, situation when the point 0 at which derivatives are to be 
evaluated lies on the hyperbola ~ = ½h, and the ellipse 7/= ½k, since in that case the 
points we have labelled 3 and 4 in our computational mesh coincide as shown in Fig. 3. 

3. Numerical procedures 

In our formulation of the problem, described in Section 2 above, the sets of finite-dif- 
ference equations (2.8), (2.19) can be solved, subject to their boundary conditions, by an 
iterative procedure. This procedure, described in more detail below, converges satisfacto- 
rily for values of the Reynolds number up to R = 7000. Solutions for values of R beyond 
this have not been considered because of the desire to maintain accuracy in the boundary 
layer that forms at the bounding ellipse. This satisfactory convergence may be attributed 
to the fact that each of the individual sets of difference equations for ~b and ~ has an 
associated matrix which is diagonally dominant. From the work of Varga [6] we know that 
for each of (2.8), (2.19), treated separately as a set of linear algebraic equations, the 
successive over-relaxation procedure converges for a well-defined range of the relaxation 
parameter. This, it appears, facilitates the convergence of an iterative procedure in which 
the sets of equations are solved alternately. 

For  each eccentricity considered, an initial distribution of ~k -- 0.0 and ~ = 2.0 was used 
as a starting solution for a Reynolds number typically 1000. Thereafter, a converged 
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solution at one Reynolds number was taken as the initial solution for an increased value 
of R. Each iteration cycle involves a complete sweep of the interior grid points to update 
~k using (2.8), a complete sweep of the interior grid points to update ~ using (2.19), and 
then the computation of new values of ~ on the boundary using (2.22). We have chosen to 
employ line relaxation for the iterations using (2.8) and (2.19). Typically, for (2.8), a 
tridiagonal system of equations is formed for ~k at the grid points along the half-hyperbola 

= ~i, ½k ~< */~< ~e - -  k ,  where the most recent values of ~k and ~ on adjacent half-hyper- 
bolae are used to evaluate the right-hand side of the tridiagonal system. If if0 denotes the 
solution of the equations at a grid point 0, and ~kt0 '~) is the previous value at that point, a 
new value ~k~0 '~÷1) is computed there, using a relaxation factor w, as 

1~ (re+l) = (1 - o~) ~(o") + W~ko. (3.1) 

In general it was found that the relaxation factor in (3.1) and the corresponding factors 
associated with (2.19) and (2.22), had to be smaller than unity in order to maintain 
stability, and frequently we used factors of 0.8. 

The iteration cycle described above is repeated until convergence is achieved, which is 
defined by the criteria 

E I 1 -- ~(m+l)(~, l~)/l~(m)(~, 11) 1 < M ×  N ×  10 -8,  

E i  I _ ~.(.,+ 1)(~, , /)/~.t . ,)(~, */)l < M x N × 10 -8,  
(3.2) 

where the summation is over all grid points. These tests and a supplementary monitoring 
of the vorticity at the centre of the ellipse, ensured that all flow quantities had converged 
to limits with a very high degree of accuracy. 

All our calculations have been carried out on two grids for which h 1 = 7r/30, k 1 = 
2,/e/87 and h 2 = ~r//90, k 2 = 2r/e/261; h2-extrapolation has then been used to obtain a 
more accurate solution as follows. If P1, P2 denote a flow property on each of these grids 
then a more accurate estimate P3 is obtained from the extrapolation formula P3 = ~(9P2 - 
P1). The choice of the grid size is such that for the fine mesh the boundary layer at the 
bounding ellipse is represented by 15 to 20 grid points over the range of Reynolds 
numbers for which solutions have been obtained. Our calculations have been carried out 
for three ellipses corresponding to eccentricities e = 0.725, 0.77 and 0.875, and in the next 
section we present representative results for values of R = 2000 to 7000. 

4. Calculated results 

In his investigation of flows of the type under consideration in this paper, Riley [2] has 
used boundary-layer methods corresponding to the case of infinite Reynolds number. An 
inviscid uniform vortex core, with vorticity ~'~, for which 

( sinh2,/¢ cosh2~ COS2~ -I- cosh2'lTe sinh2,1 sin2~ 1 

~k = - 2 ~  e -2"e cosh2T/e + sinh2r/e ) (4.1) 

is surrounded by its controlling viscous boundary layer. Although periodicity of the 
boundary-layer solution should be sufficient to determine ~ Riley shows that, because of 
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the  f in i te  c o m p u t a t i o n a l  d o m a i n ,  p e r i o d i c i t y  a lone  is n o t  suf f ic ien t ,  a n d  ca re  m u s t  be  

t aken  in m a t c h i n g  the  b o u n d a r y - l a y e r  a n d  c o r e  vor t i c i t i e s  in o r d e r  to  d e t e r m i n e  ~'~. 

Resu l t s  w e r e  p r e s e n t e d  in [2] for  a r ange  o f  va lues  o f  e up  to e = 0.77. R i l e y  was  u n a b l e  to  

f = _ . . . . , .  

/, 

2.5 

2.0 

1.5 - -  

(a) I I 1 1 I J 
' - 1 . 0  - -  0 . 5  0 . 5  x 1 .0  

2 .5  

2.0 

1.5 

- 0 . 5  Y 0.5 

Figure 4. The variation of vorticity along (a) the major axis and (b) the minor axis of the ellipse with e = 0.77 for 
R = 3000 , R = 2000 . . . . . .  . 
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2 . 4  

~ c  

2.2 

2 . 0  - b 

1.8 I I I I 

3 4R~.l 0 .,,5 6 
I 
7 

Figure 5. The variation of ~',. with R for e = 0.875 (a), e = 0.77 (b) and e = 0.725 (c). The asymptotic results [2] 
for cases (b) and (c) are shown as . . . . .  , . . . . . . . .  respectively 

extend his results beyond this value and at tr ibuted this failure to the development  of  a 
singularity in the solution at a point  of  vanishing velocity and vorticity in the boundary  
layer. This in turn suggested the possibility of  reversed flow in the boundary  layer for 
e > 0.77. 

In  Fig. 4 we show, for the case e = 0.77, the distribution of  vorticity along the major  
and minor  axes of  the ellipse for the" two values of  R = 2000, 3000. Even at these Reynolds 
numbers  there is clear evidence of  the development  of  a core, in which the flow behaves as 
if it were inviscid in nature with uniform vorticity, surrounded by  thin boundary  layers. 
Since these boundary  layers control  the core flow it is essential that they be resolved 
accurately as remarked in Section 3. 

In Fig. 5 we explore further the variation with R of  ~',., defined to be the vorticity at the 
centre of  the ellipse, up to R = 7000, for each of the cases e = 0.725, 0.77, 0.875. The 
results have been obtained from our  coarse-grid and fine-grid solutions by h2-extrapo - 
lation in the manner  outlined in Section 3. We remark that the extrapolated and fine-grid 
solutions differ by  never more than 2% in the core region. F rom Fig. 5 we see that when 
e = 0.875 the core vorticity ~, has effectively reached its asymptot ic  value, but  this is not  
the case for the two lower values of e. We have also included in Fig. 5 the asymptot ic  
values, in the limit R ~ 09, of  ~', as predicted in [2], for the cases e = 0.725, 0.77. Even at 
R = 7000 the calculated values fall short of  these asymptot ic  values by some 15%. Now, 
we note that neither the bounding  ellipse, nor  the velocity of  slip (2.3) at it, has either any 
discontinuity or discontinuity in slope and that as a consequence we may  represent ~',., 
asymptotical ly in the limit R --, 09, as 

~ . -  ~ + ao R-W2 + bo R- t .  (4.2) 
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1 I I 
0 .4  0 .2  h , .  0 ~,"a 

Figure 6. The variation of ~', with b/a  (or e) for various values of the Reynolds number R. R = oo (a), 
1 R = 7000 (b), R = 5000 (c), R = 3000 (d) R = 2000 (e). The common asymptote ~'c - {8(1 - e)} -1/2 + ~ is also 

shown - -  --  - -  

For  the values of  e = 0.725, 0.77 we have estimated ~oo using the asymptot ic  relation (4.2) 
and  the three values R = 5000, 6000, 7000. We report  that  our  estimates of  ~o~ differ by  
less than 2% and 5% respectively f rom the asymptot ic  value obta ined in [2], and shown in 
Fig. 5. This in turn confirms the effectiveness of  the method  of  [2] for problems of  this 
type in the h igh-Reynolds-number  limit. 

Figure 6 shows the variat ion of  ~¢ both  with axis ratio and eccentricity. In  this figure 
we have included, in addit ion to our  calculated results, the values ~oo f rom [2], which have 
been extrapolated to include the value at e = 0.875 shown in Fig. 5. We note  that  in 
presenting these results we have been guided by our calculations at e = 0.875 to assume 
that  for e >_ 0.875 the values of  ~oo and ~c at R = 7000 are graphically indistinguishable. It  
can be shown, for all values of  R, that  e = 1 is an asymptote  for the (~c, e)-curves as 
follows. For  1 - e << 1, ~¢ is easily estimated f rom (2.3), as velocity difference divided by 
distance, with ~ = + ½,r as ~ - l / b  - {8(1 - e) )  --1/2 + ½, a result that  is independent  of  
R. This c o m m o n  asymptote  is also included in Fig. 6. We report  no  unusual  features, in 
the solutions we have obtained,  that  may  explain the failure of  the method  of  [2] for 
e > 0.77 except to note, as is evident f rom Fig. 6, that  it is in this range that ~oo(e) begins 
to change quite rapidly. 

For  e = 0.77 boundary- layer  profiles are presented in [2] at four stations a round  the 
ellipse. Us ing  these profiles together with (4.1) we may  fo rm a composi te  solution which is 
the leading term in a uniformly-valid asymptot ic  solution as R ~ oo. In  Fig. 7 we 
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R ffi 00 - -  - -  - - .  (a) ~ = 4 , r / 30 ,  (b) ~ = 18 , t /30 ,  (c) ~ = 32~r/30,  (d) ~ = 46 , r /30 .  



246 

compare, at R = 5000, these uniformly valid profiles with the profiles calculated by the 
methods of this paper. Because of the significant differences in ~'< (see Fig. 5) we have 
thought it appropriate to compare u/~ , .  in each case. We note that at two stations the 
features of the asymptotic profiles are represented quite well by our calculations, but not 
at the other two stations. This provides further evidence that R = 5000 is not large in an 
asymptotic sense for this value of e and, furthermore, suggests that different parts of the 
flow field approach their asymptotic limits at different rates as R increases. 

5. Conclusions 

By considering numerical solutions of the steady, two-dimensional Navier-Stokes equa- 
tions in an elliptical geometry we have further demonstrated the applicability and 
effectiveness of the powerful numerical method introduced by Dennis and Hudson [3]. 
For our flow with closed streamlines we have shown the emergence, as the Reynolds 
number increases, of a region of flow in which the vorticity is uniform, separated from the 
boundary by thin boundary layers. We have extracted asymptotic information, for large 
Reynolds number, from our solutions that compares favourably with the asymptotic 
results of Riley [2]; this in turn demonstrates the effectiveness of the approach of [2] to 
these problems in the limit of infinite Reynolds number. 
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